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Oscillation of the Radial Distribution Function 
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We prove that the radial distribution function oscillates at low density in a 
system with a short-range nonnegative potential and investigate the branching 
of the solutions of an approximate equation of state. 
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function; equation of state. 

1. I N T R O D U C T I O N  

Gonchar  ~1~4) has proposed a new set of strict equations for correlation 
functions of equilibrium classical statistical mechanics. The solution was 
constructed for the pair repulsive interaction potential at arbitrary values 
of activity z and temperature with the help of some nonlinear monotoni- 
cally increasing map L. The work in refs. 1-3 generalized the well-known 
fundamental results of refs. 5-8. In specific physical applications it is impor- 
tant to have approximate equations for some quantities from which 
correlation functions and the equation of state may easily be obtained. One 
possible way was analyzed in ref. 4 and investigated for the simplest case in 
refs. 9 and 10. We prove that oscillations of a radial distribution function 
appear in systems with a short-range interaction at arbitrary low density 
and investigate the branching of the solution of the approximate equation 
of state. 

We use the notation introduced in refs. 1-4: 

{ t , X } , = { { t , , X l } , . . . , { t ~ , x , } } ,  0~<tj~< 1, x s ~ V c R  v 

B 1 = {F=  {f~({t, X}I) ..... f~({t, X},),...}: 

[Fix = s u p  essup ]f,({t, X},)I < +oe} 
n { t , X } n ~ [ [ O ,  1 ] . V ] n  
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where f .  is a measurable function on F .  = [ [0, 1 ] �9 V]", 

p0 = {1, O, O, 0,...}, 0 = {0, O, O, 0,...}, Y= {1, 1, 1, 1,...} 

Define operators T and K for a set of nonnegative kernels K.({t, X}.; 
{s, y ) )  and measure dl~(s) satisfying the conditions 

f~ d~(s) < +~ 

b0= sup ~ a~,(s) dyK.({t, X}.; {s,y})< +~:  
{t,x}~ ~o v 

TF= {0, f l({t ,  X} l), f 2( { t, X}2),...} 

KF= {(xr) .({ t ,  X}.)} .=  , ,  +~ 

where 

(KF).({t ,X}.)  

f d~(~) dyK,,({t,X}',,; <s,y})L+,({t,X}:, {s,y}) 
V 

{ t ,x} ;={{t l ,X,}  ..... {in ,,Xn-1},{t;,Xn}} 

Define a nonlinear operator L on Bx: 

L(F) = {L.(r)({t, X}.)} .=  ,, +o~ 

for 

L.(F)((t, X},.,) 

= e x p  { - z  ~"dt'. f2 d#(s) fvdY K.({t,X}'.; {s, y}) 

x e x p - z  ds' d#(s~) dylKn+,({t,X}'.,  {s',y}; {sl ,yl})  
V 

and denote the nth iteration of L at F as L"(F). Obviously there exist limits 

tim L"(O)=L~(O), lim L"(~)= L~~ 
r t ~  + o 0  n ~  - b o o  

such that 0 ~< L~ <<. L~ <<. 0. 
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The equation 

p = T p -  zKp + po (1) 

possesses a positive solution in B 1 for arbitrary z > 0, (4) 

p.({t, X},,) 

k 
= H H2~-I({t,X};~-I) f i  exp[-z(KH)2,({t,X}2~)] (2) 

l=I  l=1 

w h e r e m = k ,  f o r n = 2 k a n d m = k - 1  f o r n = 2 k - 1 ,  

H = L(H) (3) 

Now we fix dp(s) = 6(s - 1 ) ds and define 

Z~(x - y) = 1 - e-aV(x-Y) 

for the pair repulsive potential U(x-y ) ,  supposing 

zfllintsuppU > 0 ,  C(fl)-=fRvX (x)dx< 
Here fl = 1/kB T is the inverse temperature, and V= R ~ is the coordinate 
space of the physical system. The correlation functions of classical statisti- 
cal mechanics can be expressed in terms of the solution (1): 

gn(Xl ..... X . )=znexp[- - f l  E U(xi-xj)]Pn({1,  xl},'", {1, Xn}) 
l<J 

for 
n--1 

K.({t, X}~; {s ,y})=Z~(x~-y)  [-[ [1 - t jZe ( x j - y ) ]  (4) 
j = l  

we write expresions for the density 

p(z) = zHl({ 1, x}) (5) 

and the radial distribution function 

G(xl, x 2 ) = e x p [ - f l U ( x l - x 2 ) ]  Y2({ 1, xl}, {1, x 2 } ) / H I ( { 1  , Xl} ) (6) 

for Eq. (3) possessing a unique solution H for which 

H, = L,(H) = exp[ - z (KH) ,]  

See ref. 4, Eq. (1.3.11), Proposition 1.3.4, and Theorem 1.4.5. 
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2. OSCILLATIONS OF THE RADIAL D ISTRIBUTION 
FUNCTION AT LOW DENSITY IN A SYSTEM WITH A 
S H O R T - R A N G E  INTERACTION 

The solution of Eq. (3) can be expressed in terms of a signature- 
changing variety (for small values of z) 

+or 

ln[Hn({t, X}n)] = Y~ f , ( j ) ({t ,  X } , ) ( - z )  j (7) 
j = l  

where 

f .( j+ 1)({t, x}.)= ")o" tic. Iv dy K.({t, X}'; {1, y}) 

J 

x • 1-I [f~(~+)l(k)({ t, X}',, {1, y})/j(k)!] 
lz +~ k=l,j(k)>~okj(k)~jl k= 1 

(8) 

Here the addition of products is performed over all sequences of integer 
nonnegative numbers {j(k)} satisfying the condition written out in the 
brackets under the first addition sign. We consider the kernels 

n--1 
N K.({t, x}.; {s,y})=z~(xo-y) Y~ [1-  tjz~(xj- y)] 

j =  max(1,n N + I )  

for V= R v, diam supp U = 2~. The case N =  +Go corresponds to an exact 
equation of state (1)-(5); the case N <  +oo corresponds to an approxima- 
tion up to the ( N +  1)-th virial coefficient with a further reduction to a 
nonlinear equation for some function with a finite number of variables; see 
Section 2.5. (4) We use the notation GN(Xl, X2) for the approximate radial 
distribution function (6) calculated for the approximate equation of state 
(1)-(3, 5) with K~ instead of K,. 

Lemma 1. f ,( j)({t ,  X},) does not depend on {t, X } , _ u  for n>N. 

Proof. We use induction (on j). In accordance with (8), 

L(1)({t, x}.) 

f~n fR n-- 1 = at" dy Z~(x. - y )  1-I [1 - tlz~(xl--y)] (9) 
~' l=raax(1,n-- N+ 1) 

There are multipliers [1- t iZp(x~-y)]  for l = n - N +  1 ..... n - 1  only in 
the integrand (9); thus the statement of the lemma is true for j =  1. Let the 
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proposition of the lemma be valid for natural j from 1 to J and all natural 
n > N and its condition be valid for j = J-I- 1. We have 

f.(s+ 1)({t, x}.) 
tn n 1 =fo dt;fR ay z (xo- y) FI El 

~' l =  m a x { t , n  N + I )  

J 

x 2 [I [f{(k+~,(k)({t,X} ", {1, y})/j(k)!] (10) 
[~_Jk=l,;(k)~okJ(k)= J[ k - -  1 

fn+~(k)({t, X}n+l) does not depend on {t, X},  N+, and there are multi- 
pliers [1- t tZa(x~-y ) ]  for l = n - N + l  ..... n - 1  only in the integrand 
(10). Thus the lemma has been proved by induction. 

I_emma 2. fn(j)({t, X}~) does not depend on {tl, xl} for arbitrary 
natural j, n, and any {t, X}n such that: 

(i) 2 <~ n <<. N. 
(ii) ] x t - x l + l [ ~ a f o r  l=2, . . . ,n-1.  
(iii) Ix l -x2 t  > r n i n ( N , j + n -  1)a. 

Proof. If the condition of the lemma is valid, then 

Z~(x . -  y) r [xn- y[ <. a 

Ix1-Yl >1 I x l -  x2l - lx2-  x3] . . . . .  I x , -  yl 

> m i n ( N -  n + 1, j )  a 

=~ Z/~(xl - -y)  = 0 

in expressions (9)-(10). One should use induction (on j)  in order to end 
the proof (with the help of lemma 1 for N <  +oo). 

The value of f~(j)({t, X}n) does not increase for increasing t I due to 
the recurrence relations (9)-(10). The previous lemmas state the sufficient 
conditions for the value fn(j)({t, X}n) to be independent of tl. 

Lemma 3. We have 

f2(j)({t'l, xl} { 1, x2}) - f2( j ) ({ t ; ,  Xl}{1, x 2 } ) > 0  

if O~<t'l < t[ ~< 1 and O< IXl-X2[ < m i n ( N , j +  1)a. 
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Proo f .  We have 

(KJ~)n({t, X} ,_  1, {1, xn}) 

dt. IR dxn+, "f2 dt +jfRvdxn+j+  

X l-I Z B ( X n + k - - X n + k + l )  l ~  [1-- t lz~(xr >~0 
k= = 1 l=max(l,n+k--N) 

for arbitrary natural j and n. Furthermore, the integrand is positive for 
almost all tk (being from [0, 1), k = 1, 2,..., n + j ,  and xn+k+~ such that 
Ixn+k+ l - x , ]  < ~/2, which implies 

[X~+k+l--X~+kl<a~Z~(Xn+~+l--X,+k)>O for k = 1, 2,..., j 

Thus (KJE),({t, J (} , -1 ,  {1, x , } ) i s  positive for arbitrary natural j and n if 
tk < l for k < n. 

Now, f 2 ( j ) ( { t , , x l } ,  {1, x2}) equals the sum of (KJO)2({tl,Xl}, 
{1, x2}) and terms not increasing for increasing tl [see Eqs. (8)-(10)]. 
Denote N '  = rain(N, j + 1 ). Then 

(KJ~)2({tl, xl}, {1, x2}) 

= dtk dxk+,Z~(Xk--Xk+t) I-I [ t - - t l z~(Xl- -Xk+l)]  
v I=1 

x ( K  j N'+le.)N,+,({t,X}N, , {1, XN,+I}) 

We have 

(KJ-N'+~E)N,+I({t,X}N , , {1 , xN ,+~})=I  for X ' = j + l  

It is positive for t2, t3 ..... t N, being from (0, 1) and does not depend on t~, 
xl for N ' =  N (see expression for KN). Let the real, positive number d be 
less than r 1 and xk be a point of R v such that 

I x k - x ~ - ( k - 2 ) ( x l - x 2 ) / N ' } < J x ~ - x 2 1 d / 2 N '  for k = 3 , 4  ..... N ' + I  

Then 

[xk-- xk+ ~l ~< [xk -  x2-- ( k -  2)(xl - x2)/N'I 

+ Ixk+ 1 - x 2 -  ( k -  1 ) ( x l -  x2)/N'[ + I x1 -  xz l /g '  

< (d/2 + d/2 + 1 )Ix1 - x21/N' 

= (d +  1)Ix1 - x21/N' < cr 

which implies the inequality ZB(xk -- xk + 1) > 0 for k = 2, 3,..., N'. 
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Thus we have pointed out a domain of values t2,...,t N, and 
x3, x4,..., XN'+I for which the integrand of the expression obtained above 
for (KJ~)2({tl, xl }, {1, x2}) (being nonnegative in any case)is positive for 
t, < 1. The following inequalities are valid for these values of t 2 . . . . .  t N, and 
X3~ X4~...~ X N ' +  I : 

Ix  1 - - X N , + I  I ~ I X 1 - - X  2 - -  ( N ' - -  1 ) ( X l - - x 2 ) / N ' I  

+ Ixu,+ 1 --x2-- (N'--  1)(xl-Xz)/N' l  

< (1 + d/2)Ix1 - xzl/N' < a 

)~ f l (X l  - -  X N '  + 1 ) > 0 

The difference 

(K]Y)2 ({t'l, xl}, {1, x 2 } ) -  (Kl~)2({t~ ', Xl}, {1, x2}) 

= f o d t z f d x 3 " " f f  dtN, fdXN,+l(KJ-N'+le)N,+l({ t ,X}N, ,{1 ,  XN,+l}) 

x 1-I Xn(Xk--Xk+t) 1--[ [1--t ,Xz(X,--Xk+l)] 
k = 2  1=2 

x [1 - t ' lZ~(x  1 - xk+ 1)] - [1 --t j 'ZB(xl--xk+l) ] 
=2 k = 2  

is positive for 0~< t' 1 < t['~< 1 iff there exists a domain of values of t2,...,t N, 
and x3,..., XN,+I such that the difference {...} is positive with other multi- 
pliers of the integrand. But we have pointed out this domain (above), for 
which the following inequalities are valid: 

1--t ' lz~(Xl--Xk+l)>~l--t~'ZB(Xl--Xk+l))O, k = 2,..., N ' -  1 

(the left part of this inequality is positive for t'l < 1); 

1 - -  t'l ZZ(Xl - -  X N '  + 1) > 1 -- t'l'Zz(X 1 - X N ,  + 1) ) 0 

Let f l  = C(fl), 
J 

f j+a=C(f l )  E 1-[ [f~(k)/j(k) !] 
1*TJk=l,j(k)>~okj(k) = J  k =  1 

The equation 

possesses solution 

f= zC(~)eP 

for J>i 1 

-i-oo 

r162  
j = l  

822/68/5-6-26 
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for Izl ~ 1/eC(fl). It is easy to prove that f , ( j ) ({ t ,  X}~)~<fj; use induction 
on j and replace the product on the right part of Eq. (10) by 1. Thus, for 
Izl ~< 1/eC(fl), the series (7) converges and Eq. (3) possesses a unique 
solution--compare with the consequence of Theorem 1 of ref. 7. Denote 

~ d x )  = f Iz#(x + y)  - z#(y)l @ ~ 2c(fl) 

L e m m a  4. There exist nonnegative values Cj, n< +vo such that 

If.(j)({1, x'l}, {t2, x2} ..... {t._l,Xn_l}, {1, x.}) 

-- f , ( j ) ({1,  x;},..., {tz, Xz}, { t , _~ ,x ,  ~},{1, x,})l 

.~ Cj,. ~'~(x~ - x~ ) 

Proof. We use induction (on j). Take C1., = 1 [see Eq. (8)]. Further- 
more, one may take C1., = 0 for n > N (see Lemma 1). We have 

I f , ( J +  1)({1, x'~}, {tz, X2},..., {t, ~ ,x ,_t} ,  {1, x,})  

- f ~ ( J +  1)({1, x~'} ..... {t2, x2}, {tn l,Xn-1}, {1, X,})[ 

1 n - - 1  

RV l = m a x ( 2 ,  n - -  N + 1 ) I'Y'kJ = l.j(kj >>-0 k j ( k )  = J] 

J 

X [1 --S)(.fl(X'--y)] U [fJ(~+)l(k)({ 1' X'l} ''''' {1, y})/J'(k)[] 
k = l  

J 

-- [1 -- SZfl(x"-- y)] H [fJ(+k)l(k)({l' x~'} ..... {1, y})/j(k)! 
k = l  

H e r e s = l  i f n ~ < N a n d s = 0 i f n > N .  Oneshould:  

(a) Replace the product 

n - - I  

1-] [1 - tzZp(x,- y ) ]  
l - -  m a x ( 2 ,  n - -  N + 1)  

by 1. 

(b) Add and substract (in brackets 1--. 1) the terms 

f ,+ l (k ) ({1 ,  Xl},..., {1, y}) [1 - sza(x' - y)]  j'(k) , 
1 

J 

X U k-' ,,+1, F/'J"(k)gk~l'~l,,t , X t l t } , . . . ,  {1, y}l/j(k))!] 
k = l  
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and 

n + l ( k ) ( {  l ,  Xl}  ..... { 1 , 2 } )  
= l  

J 

x [1-sza(x"--y)]  l~ [f,+,(k)(J"(k) {1, Xl },... , , t  {1,y})/j(k)!] 
k = l  

for integer j'(k) >~ O, j"(k) >~ O, such that j'(k) +j"(k) = j(k). 

(c) Use the inequalities f,(j)<<.fj and conjecture that the statement is 
valid for j = J in order to end the proof. 

If the solution of Eq. (3) is unique [for example, for zC(fl)< e(4)], 
then the relation 

H,+.({0, r},, it, x}.)= H.({t, x}.) 

is valid for arbitrary natural n and L We obtain 

f t+,( j ) ({0,  Y},, {t, X} , )= f~( j ) ({ t ,  X},) 

having differentiated in H n by z. We use the notations 
G*(r*) = GN(Xl, x2), and 

G* (r*~ aef N,j \  I = GN, j ( X l ,  X2) 

%r f2(j)({0, x, }, {1, x 2 } ) - f 2 ( j ) ( {  1, x,}, {1, x2})/>0 

for r* = I x , -  x2l/a. Thus 

+co 

In a*(r*)= -flU(x, - x 2 ) -  Z a*,j(r*)(-z) j (11) 
j = l  

G*i( r*  ) > 0 if r* < min(j  + 1, N) (see Lemma 3) 

= 0  if r*>min( j+l ,N)  (see Lemma 2) 

P r o p o s i t i o n  1. Let 

lim ~ ( x )  = 0 
x ~ O  

(12) 

Then one can find positive zn for n<~N-2 such that G*(r*)-1 for r* 
from [-1, n + 1] changes its signature at least n times for any z from [0, zn]. 
The roots of the equation G*(r*)= 1 for z$ 0 converge to integer points j 
( j = 2 ,  n +  1). 
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Proof. Relation (12) is a sufficient condition of continuity of GN, j(r ) 
on r* [see Lemma 4 and the definition of ~* tr* �9 -'u,j~ )]: We have 

In G*(r*)= --(--z)J[GN, j(r ) - zG* , j+ t ( r* ) ]  + O(z j+2) 

for r* from [j,j-I- 1], 1 <. j< .n<~N-2 ,  because the first j items of the 
series (11) vanish for such values of r*. This fact is used below without 
mention. If z > 0 is rather small, then 

sign In G*(j)  = - (  - 1 )J, sign In G* (j  + 1 ) = ( - 1 )J 

and In G* changes its signature at least once for 

r* = r*j (z )  ~f inf{r*: j~< r* ~<j+ 1, In G*(r*)= 0} 

due to the Cauchy theorem. We have 

GN, j(rN, j(Z))--~GN, j+I(rN, j(Z))=O(z 2) for z > 0  

The functions ~* tr*~ "u,  j t  ~ are continuous and bounded. That is why 

G* j(inf lim r*(z)) = 0 =~ inf lim r*(z) = j + 1 
' z ~ 0  z $ 0  

[see properties of G * j  written out just below Eq. (11)]. Thus, all solutions 
r* from (j, j + 1 ] of equations 

In G*(r*)=0r162 1 

converge to j +  1 [see definition of r*,j(z)]. 
One can find positive a, b, and z, such that [b[ < 1, z, < 1/eC(~), 

sup [ l nG*( r ) [=  sup +~G*,k(r)(--z)  j <2~.z~<ab j 
j ~ r ~ j +  l j ~ r ~ j +  l k = j  

and the series (11 ) oscillates for z ~< z, (use series for f ) .  One should use the 
expansion e x = 1 + x + O(x 2) in order to prove the same statement for the 
function [G*u(r*)- II. 

Activity increases iff density increases for small values of both of them 
[dp(O) /dz=l>O].  The amplitudes of oscillations of ln G*(r*)  and of 
G*(r*) - 1 being equal, 

z j sup IG*j(r) l+O(zJ+l) ,  j = l ,  2 ..... n - 1  
j<~r<<.j+l 
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increases for rather small increasing values of density and activity. If we 
replace the product 

m a x ( 0 ,  n - N )  

[I [l - t,z~(x,-y)] 
l = 1  

by 1 in order to take into account only N particle interaction, we change 
the functions G* u,j, J =  N, N +  1 ..... in such a way that the radial distribu- 
tion function (approximated) G*(r*) equals 1 for r* from I-N, + ~ ] .  

P r o p o s i t i o n  2. G*(r*) monotonically decreases (increases) for r* 
from ( N -  1, N) and even (odd) N if U(x-y )  is the pair repulsive potential 
with finite radius of interaction o-. 

Proof. For Ix1-  x21 > ~, 

~/2({1, x l } ,  {1, x2})  

= 1-[ exp - z  dtt dxt+l Z~(xl-xt+l) I~ [ 1 - t j Z ~ ( x j - x t + l ) ]  
l = 2  v j = l  

• x}~+~)-..}, t1=t~+,=l 

Here the product stands for a product of nonlinear operators and 
HN+I({t,X}N+I) does not depend on {t,X}l .~4) We can suppose 
Ix t -x t+ l [  ~<~ f o r / = 2 ,  N. Thus, lxt-xzl  <<. ( / -  2)cr for k = 2 ,  N +  1. From 
the triangle inequality one obtains for Ix1-xz]  > ( N - 1 ) a  

I x l - x t l > ( N - l + l ) ~ Z ~ ( X l - X t ) = O  for l=3, N 

For 

Ix1 - x21 > ( N -  1 )~ > Ixu+ ~ - x21 

the distance [xt - XN+ 11 increases with increasing Ix 1 - x2l. 

3. GENERALIZED STRICT POSITIVITY AND 
PERRON-FROBENlUS THEOREM 

Let us denote the space of functions defined on FN, measurable and 
essentially bounded with respect to the measure 

N - - 1  

I-] (at~ axk) [1 +6(t~-  1)3 atNaxN 
k = l  
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as BN, its subset of continuous functions a s  C N with a norm 

Ihl = es sup Ih({t, X}u)l 
{ t , X } N ~ F N  

We define f = f ( h )  from B N_ 1 for translation-invariant h from BN, 

/ = 1  l = j  

i.e., introduce new arguments--differences of coordinates--instead of 
coordinates in order to obtain a compact space of arguments. Define the 
action of the linear bounded operator P o n  B N 1 as 

Pf({t, x}N dtN fR" dXN ~ f l ( X N )  l= 1 - -  ttg~ N 

• x2} ..... {tN_,,XN 1}, {tu, Xu}) (14) 

and the nonlinear operator S N acting o n  B N as follows 

SN(h)({t, X}N) 

=e xp  --z dt~ dyz~(xu--y)  l-I [ 1 - - t t ) ~ ( x t - - y ) ]  
v 

l = l  

• x2} ..... 1,y))} 

The equation ~4) h = SN(SN(h)) is rewritten in terms of f (h)  as 

f =  exp[ --zP exp( - zP f ) ]  (15) 
[the value of exp(..-) is calculated at every point].  We suppose below 
d i a m s u p p U = 2 a <  + ~  and Eq.(12) to be valid. The solution f of 
Eq. (15) is determined by its values on 

MN I={{ t ,X}N-~EFN-I" IXk I<a ,  k = l , N - - 1 }  

It is a continuous function because of Eq.(12). Denote w~=f ,  
w2 = e x p ( - z P f ) ;  B = [zwl Pzw2P] N- 1 is a linear operator determined by 
the bounded (measurable) kernel B({t, X}N 1, {S, Y}N 1) and measure 

N - - 1  

dm({s, Y}N_I)= ~ (dszdy,) 
l = 1  
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zwjP is the composition of P and the operator of multiplication (at every 
point of the arguments) by zwj. One can prove that the value 

fwIB({t',X'}N-l, {s,Y}N-1)--B({t,X}N 1, {S, Y}N ,)ldm({s, Y}N-1) 

converges to zero uniformly for {t',X'}N 1~ {t,X}N-I using Eq. (12) 
and performing some manipulations just as in the proof of Lemma 4. Thus 
B is a compact operator. Let us define 

Q(v) = inf Q, q(v) = sup q (16) 
Q >~O, B v ~  Q[vIB1 q>~O, Bv>~q[v[Bl 

for any nonnegative function v from C(Mu_l): Q(v)~ 1, q(v)~>0. Here 
and below we use the notation B1 for the image of the function that is 
equal to 1 at each point of MN 1. Obviously [By[ <~ Ivl [Bll for arbitrary 
v. One supposes that there exists a nonnegative vector 1 such that 
Q(v) < +0% q(v)> 0, for any v in order to generalize the results of the 
section to the case of abstract space. 

Proposition 3. For arbitrary v>~0 from C(M N 1)\{0}, 

q(v) > 0 (17) 

ProoL One can estimate e-zC(') ~< wj ~< 1, 

e--2(N 1)zC(fl) 

, 1  

• I-[ z dw,  1-I 
/=0 v j=l 
N--l[ (Nk~= 1 ~' )1} x 1~ 1 - t j Z ~  xk+  w~ 
j = l  = j  k=l 

x [I z dst dY, Z,(Y,) l~ ( 1 - u j )  17I ( 1 - s j )  v({s, Y}N-,) 
/=1 v j = l  j=l 

Denoting 

q=e 2(N--OzC(H)z2(N 1)IVl I[NC(13)]I-N 

XfM ( l - - s , )  w 'Ze(Y,) V({S, Y}N_l)dm({s,y}u_l)>O 
N-1 

we have Bv>~qlvlB1. 
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T h e o r e m  1. Let M N t be some compact set, and B be a linear 
nonnegative compact operator o n  C ( m u _ l )  satisfying inequality (17). 
Then the spectral radius of B is its eigenvalue with multiplicity equal to 1 
with nonnegative eigenvector. 

P r o o L  Define the function r(v)  for v from the cone of nonnegative 
functions K + = C + ( M u _ I )  differing from zero: r ( v ) =  SUpr'v <t~ r'. We have 

r(av) = r(v) <~ r (Bv)  

Let {vj} be a sequence of elements from B { y e K + :  for arbitrary a > 0. 
]Yl = 1 } such that 

lim r(vj) = sup r(v)  = r 
J--+ + c o  

There exists a point of accumulation v-=limk~co vj(kl with 
r(v) = r >t r(B1) ~> q(B1). If the equality 

(B-r)v--O (18) 

is not valid, then the inequalities 

B ( B  - r )v  = BBv  -- rBv >1 q(Bv  - rv) ]By - rvl B1 

BBv  >1 (r + q( Bv -- rv)1By - rvl/lvl ) By 

contradict the definition of r(v). 
Each f from C ( M  N_ 1) can be expanded in the following manner: 

f =  [ f ] a -  I f ] 2  + i ( [ f ] 3 -  I f ] 4 )  

for [ f ] l ,  I f ] 2 ,  [ f ] 3 ,  [ f  ]4 nonnegative (i.e., from K +) such than (i) 
I f ] t - - I f ] 2  and [ f ] 3 - [ f ] 4  are determined uniquely; and (ii) if 
f = f ~ - f 2 + i ( f 3 - f 4 )  for f~, f2, f3, and f4 from K +, then [ f ] j<~f j  for 
j =  1, 2, 3,4. 

I f ]  ~ is one-half of the sum of the absolute value of the real part of f 
and the real part o f f ,  and I f ] 2  is one-half of their difference; [ f ] 3  is one- 
half of the sum of the absolute value of the imaginary part of f and the 
imaginary part of f,  and I f ] 4  is one-half of their difference for f from 
C ( M u _  l). Obviously, 

[ a ( [ f ]  1 -- [ f ] 2  + i [ f ] 3  -- i [ f ] 4 ) ] j  = a E f ] j  

for any positive real a and j = 1, 2, 3, 4. If u = Bw, then 

[u]~ - [u]2 = B( [w]  ~ -  [w]2),  [ u ] 3 -  [u]4 = B ( [ w ] 3 -  [w]4) 

which means that the operator B is real. 
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Suppose that there exists w =  [ w ] ~ -  [w]2+i([w]3-  [w]4) being an 
eigenvector of B with eigenvalue a =  laIei~: Bw= aw, such that laJ > r. 
Then 

- Q( [w]l + [w] 2) I [w]~ + I-w] 210v/q(v)[vl 

~< - Q ( [ w ] l  + Uw]2)ll-w]~ + ffw]2lOl 

-B(Ew]l  + [w]2) 

~< B ( E w ] l -  Ew]2) 

~< B([w],  + [w]2) 

~< Q([w],  + [w]2)f[w],  + [w]]lB1 

~< Q([W]l+ [w]2)l[w]l  + [w]2lOv/q(c)lvt 

and 

- Q ( [ w ] 3  + [-w]4)ll-w]3 -~- [w]4lOv/q(v) lv] 

~< -Q( [w]3  + [w]4)l[-w]3 + I-w]41 B1 

~< -z~([w]~ + [w]4) 

~< B ( [w ]3 -  [w]~) 

~< B(I-w]3 + I-w]~) 

~< Q(Ew]3 + [W]a)lEwS~+ I-w]41Bl 

~< Q([w]3 + [w]4)l [w]3 + [w]41Ov/q(v)lvj 

[see definition (16)]. That is why 

B([w]~- [w]2 +ClV)>~O 

B([w]2- [w]~ + c]v) >i 0 

B([w]3- [w]4 + csv) >t 0 

O ( [ w 1 4  -- [W]3  -]'- 6'4/) ) ~ 0 

for 

cl = c2 = Q([w],  + [w]2)] [w ] 1 + Fw]]ltlvl q(v) 

c3 = c4 = Q([w]3 + [W]4)] I-W]3 -]- [W]41/IV[ q(v) 
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Let 1 < n l  < n 2 < n 3 <  ... be a sequence of natural numbers such that 
exp(ink~b) ~ 1 while k ~  +oo. Obviously, 

lal --nkBnk( I-W] 1 -- ['W]2 -~- CI "U) ~ 0 

hal-nkBnk(Ew]2 - [-W]l ~- c2/)) 9 0  

lal -"kBn~(I-w]3 -- l-w]4 + c3 v) i> 0 

lal--nkgnk([w]4 -- [W]3 ~- C4U) ~ 0 

We obtain [ w ] l ~  [ w ] 2 ~  < [w]l  and [w]3<~ [w]4~< [w]3, having used the 
following equalities: 

lal -n~B"k([w]l -- [w]2 + i([-w]3 - -  1 - W 3 4 ) )  ~ -  la I -"kBnkw = einkOw ~ W 

l a l - ~ B ~ k c j v = c j ( r / l a l ) n k v - - , O  while k ~  +oo 

This implies [w] 1 = [w]2, [w]3 = [w]4 ~ w = 0, i.e., our supposition was 
invalid, i.e., the absolute value of any eigenvalue of B is not greater than 
r, i.e., r is the spectral radius of B. 

Let w be any element from k e r ( B - r ) \ { 0 } .  Then B ( [ w ] l -  [w]2 )=  
r ( [ w ] l -  [w]2), B([w]3- [W]4 ) ~---r([w] 3 - I-w]4), the operator B is real. 
We obtain B [ w ] j > ~ r [ w ] j  ( j =  1,2, 3,4) applying [ ' ] 1  and [ ' ] 2  to the 
latest equalities and using property (ii). Thus, [w]j ( j =  1, 2, 3, 4) satisfies 
Eq. (18)--see the definition of r. That is why it is enough to prove that any 
u from K+c~ k e r ( B - r ( B ) ) \ { O }  coincides with v up to some nonnegative 
multiplier in order to prove that d i m k e r ( B - r ) =  1. Define 

a = sup b <~ Q(u) lu l /q (v ) Iv l  
u~bv 

If u does not equal av, 

u - av = B(u  - av)/r  >i q(u - av)[u - av lB1/r  

>t q(u - av ) lu - avl v /Q(v)  Iv[ 

which contradicts the definition of a. 
Note that the theorem is proved for an operator B that is not strictly 

positive, i.e., we generalize Theorem 6.3 of ref. 11 for the case of abstract 
space (not only the space of functions) and not strictly positive operator 
B, supposing the existence of the expansion w = [ W ] l -  [w]2 + 
i ( [ w ] 3 - [ w ] 4 )  with properties (i)-(ii) and the existence of a nonnegative 
vector 1 such that Q ( w )  < oo and q(w)  > 0 for any nonnegative w. 

We use the notation r (B)  for the spectral radius of operator B. Define 

M ) _  1 = {{t, X } N _ I : O ~ t j <  1, 0~< IX~I ~<~r} 
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Taking positive 

N--1 
q~- f df* (~1, X } N _ I )  1-~ (1 - - t t ) 'e -2(N-I~zC(~)z2(N-1) /m(MN_I)N N t 

l= l  

for f*>~ 0 from C*(M N_ 1), f * ( M u _  1)> 0, one can estimate the Radon-  
Nikodym derivative 

dB* f * (  { t, X}  N- , )/dm > q dB*m( { t, X}  N_ 1)/dm (19) 

The right part of the inequality is positive on MN 1; thus, the solution of 
the equation [ B * - r ( B ) ] f * = O  can be taken positive on M } _  1. The 
solution of Eq. (18) should be taken positive on M'N_I also. We have 

dim ker[B* - r(B)] = dim k e r [ B -  r(B)]  = 1 (20) 

Let V be a Banach space, and A be an endomorphism of V such that 
A k is compact for some natural k; then the Fredholm alternative is valid 
for 1 - A .  (12) If the statement of Theorem 1 is valid for B = A ~, then it is 
valid for B = A. 

4. B I F U R C A T I O N  OF T H E  S O L U T I O N S  OF T H E  
A P P R O X I M A T E  E Q U A T I O N  OF STATE 

Denote the solution of the equation f = e-zPY as f (z) ,  

Zo= s u p { S >  0: z < z ' ~  r ( z f ( z )P)  < 1} 

We suppose Zo to the finite, otherwise Eq. (15) has only one solution for 
any z > 0. There exists a point of accumulation of the equibounded and 
equicontinuous functions 

fo = lim f ( zk) ,  
z~ T z0 

f0 = exp ( - zo P fo )  

r(zof(zo)p)  = 1; otherwise, there is a contradiction with the definition of Zo. 
The (1 + ZofoP) -1 does not exist (as bounded operator) iff - 1  is an eigen- 
value of ZofoP (see the last paragraph of Section 3). This condition implies 
dim ker(1 - B ) ~ > 2  for B =  (ZofoP) 2(N-l), which contradicts Theorem 1. 
Thus, there exists a bounded linear operator (1 +ZofoP ) 1 and f ( z )  can 
be prolonged smoothly for z > z0: 

df(zo)/d.~ = -- (1  ~- ZofoP ) l foPfo 
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Denote the pair of real numbers Z =  (z, z*) and define the nonlinear 
operators S, F, and G acting on C(MN_ 1), 

S(f, Z)  = e x p ( - z P f )  

F(f, Z) = e x p ( - z ( f * f )  Pf) 

G(f, Z) = S(F(f, Z), Z) 

where 

f*~ker[1-L*(zo)]\{O},  L(z)=zf(z)P (21) 

and ( f ' f )  is the value of the functional f *  on the vector f. Here the 
symbols F and G denote objects other than in Sections 1-3. Take 

z* = Zo/(f*fo ), Zo = (Zo, z~) (22) 

Below we distinguish below PvPw--the result of action of P on the product 
of v and P w - - a n d  (Pv)(Pw), which is the product of Pv and Pw. Some- 
times we do not indicate the dependence of functions and operators on f 
and Z. 

Lemma 5. There exists a bounded operator (1 -OG(fo, Zo)/~3f) 1. 

Proof. We have 

c~G(fo, Zo)/af = L2(zo)+ fx(fo, Zo) ) ( f *  

where 

f~(f, Z)= zGPz*FPf, (f*f~(fo, Zo)) --- 1 

and v ) ( f *  is a one-dimensional operator, acting as follows: 

[v><f*]h= <f*h>v 

The operator 

( L2 + A )  (f,)N--1 

is a compact  one as the sum of compact B = L  2(u-l) and the sum of 
2 u l - 1  one-dimensional operators. Thus, the Fredholm alternative is 
valid for 1 - L 2 --fl ) ( f*"  The equation 

[1 -- LZ(zo)-I w = ( f ' w )  fl(fo, Zo) 
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possesses a solution w iff ( f * w ) ( f * f l ) =  O, which implies that w is from 
ker (1-L(z0) )  and ( fo*w)=O,  implying w=O because of the signature 
constancy of the elements of k e r ( 1 -  L(zo)) and ker(1-L(zo)*) .  

Denoting the analytic functions R(z)=r(L(z ) )  and v(z) from 
k e r [ R ( z ) -  L(z)], we obtain 

from 

dR/dz = (v*(dL/dz)v ) / (v*v  ) 

(dR~& - dL/dz )v + ( R - L) dv/dz = 0 

Below we suppose the following condition to be valid: 

dR(zo)/dz = (f*V(Zo) { [1 + L(zo)3 l fo} /Zofo) / ( f*v(zo) )  > 0 (23) 

The equation 

f =  G(f, Z) (24) 

possesses a unique solution for Z from the neighborhood of Zo. Denote 
this solution as f ( Z )  and set qS(Z)= z - z *  ( f ' f  (Z)) .  

q~(Z) = 0 , ~ f ( Z )  = exp{ - z P  exp[ - zPf (Z) ]  } (25) 

T h e o r e m  2. If conditions (21)-(23) are valid, then 

a~(Zo): o, a2~(Zo): [dR(Zo)/dz] [3az- 2(Zo/~) dz*] dz 

i.e., Zo is a hyperbolic-type singular point of the curve (25). 

Proof. We have 

dqk = ( 1 - z* <f*3f/c~z ) ) dz - ( ( f * f  > + z* <f*gf/c~z* > ) dz* 

Having differentiated Eq. (24) for Z = Zo, we obtain 

[1 - L2(zo)] Of(Zo)/Oz 

= <f*  Of(Zo)/Oz)f~(fo, Zo)+ OG(fo, Zo)/~z (26) 

[1 - L2(zo)] Of(Zo)/~z* 

= ( f *  Of(Zo)/~z* ) L ( fo ,  Zo) + OG(fo, Zo)/~?z* (27) 
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where OG/Oz=-(GPF), OG/Oz*~(zGP<f*f>FPf) .  The Fredholm 
alternative gives 

( f *  Of(Zo)/&* ) = - ( f * f o  >/z* (28) 

Of(Zo)/&* e ker[1 - L(zo)l (29) 

( f *  3f(Zo)/& > = <f*fo>/Zo (30) 

Of(Zo)/&= -L(zo)[1 + L(zo)] *fo/Zo- (3zg/2Zo) Of(Zo)/Oz* (31) 

Indeed, Eq. (26) at the point 

(f, Z ) =  (fo, Zo) (32) 

for (30) takes form 

(1 - L 2) Of/Oz = -L(1  - L) f / z  

Thus, Of(Zo)/Oz can be represented as follows: 

af(Zo)/Oz = -L(zo)  [ 1 + L(zo)] -lfo/zo + a af(Zo)/az* 

where the constant a is determined uniquely from Eq. (30). Thus, 
d(~( Zo) = O. 

We suppose equality (32) to be valid below in the calculation of the 
value of the corresponding derivatives, which implies 

<f*zfPv > = <f*v >, zfPOf/&* = Of/Oz* 

Denoting A = zGPz*<f*f> FP, we obtain 

(1 -A)  o2f/Oz .2 = ( f * a2f/&*2 > L + a2a/az .2 

+ 2(OZG/Oz * Of) Of/&* 

+ (a2G/af2)(af/az ,, af/Oz*) (33) 
having differentiated (24), where 

OZG/Oz .2 = (Af/z* )2/G - zGPF( ( f *  f > pf)2 (34) 

(a=a/az * af)v = (Af/z*)[(aG/af)v]/6 + (aG/Of)v/z* 

- z G P F ( < U * f }  P f ) ( z * < f * f }  Pv+z*<f*v> Pf) (35) 

(a2ataf2)(v, w) = [ (ao la f )v ]  [(aalaf)  w] la  

+ ( < f ' v >  Aw+ <f 'w> Av) /<f* f> 

- zGPz*ZF(<f*f}  Pv + < f ' v }  I f )  

x ( < f ' i }  Pw+ < f ' w }  Pf)  (36) 
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Having substituted (28)-(29) and (34)-(36) in (33), we obtain 

( f *  02f(Zo)/C~z *a) = 2 ( f * f o  )/z~ 2 (37) 

using the Fredholm alternative for (33). Obviously, 

aa~b/Oz .2 = - 2  ( f *  c3f/?z* ) - z* ( f *  ?2f/~?z*2 ) 

which vanishes for (32). By analogy with (33), 

(1 - A) 02f/Oz 2 = ( f *  ~2J'/~z2) f l  + 02G/Oz ~ 

+ 2(a2G/az ef)  Of~& 

+ (~?2G/~?f2)(~Vf/~Vz, ~ffi?z) (38) 

~2G/~z2 = G( PF)( PF) (39) 

(02G/c?z gf)v = ( I / z -  PF)[ (oa/~f)v]  (40) 

~2~/0z2 = - z *  ( f *  O2f/3z 2 ) (41) 

Having substituted (301-(31), (36), (39), and (40) in (38), we obtain 

62q)( ZoJ/gz 2 = - 6  dR(zo)/dz 

using the Fredholm alternative for (38). 
It is easy to prove the following equalities: 

~2~( Zo)/Vz &*  = -(Zo/Z~ ) a~O( Zo)/az ~ 

= - -2 ( f* fo )  dR(zo)/dz 

acting on (24) and (25) by ~?2/~?z Oz* and using the Fredholm alternative in 
the manner demonstrated above in order to end the proof/TM 

If dR(zo)/dz = 0, it is necessary to investigate d3(~(Zo). For the branch 

dz(Zo)/dz* --- 0 (42) 

dp(Zo)/dz* = z a  af({0, 0),..., {0, O))lOz* @ 0  (43) 

Note that the formulas (42)-(43) are in good qualitative agreement with 
Monte Carlo and molecullar dynamics simulations (see Fig. 2 of ref. 14). 
One should take large N in order to obtain a good quantitative agreement. 
We note that the singularity on activity appears before the singularity on 
density for N =  2. ~ 
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5. D E C I S I O N  P R O B L E M  OF E Q U A T I O N  f=SN(f) 

T h e o r e m  3. There exists at least one solution of the equation 

f = S u ( f )  

for all positive values of z, if condition (12) is valid. 

Proof. Let {an(t)>0}, {bn(t)>~0} be sequences of functions 
�9 converging to Dirac delta functions, defined on [0, 1 ] and R v, respectively: 

diam supp a n = diam supp b. < 1/n 

cn(x) >-0 is an infinitely differentiable function on RV: 

= 1 [xl ~< n 

cn(x) < 1 n < l x l < ( n + l )  

= 0  I x l > ( n + l )  

Let us consider the sequence of operators 

Su, . ( f ) (  { t, X}  N) 
N 

= I1 on(x+) 
j=l  

xexp - z  dt} dyx~(xN--y)  ~I [1--tJZ~(xs--Y)] 
v j ~ l  

• dtj an(t j -- tj) dxj bn(xj - xj) 
j = 2  J =  v 

xf ({ t~ ,  x~} ..... {tSv, XSv}, {1, y})} 

Denote the Banach space of continuous functions, defined on F N and 
vanishing at infinity (for spatial arguments), with a norm 

][fl[ = sup [f({t, X}N)[ 

as Co(FN). Let 

B = { f  ~ Co(FN): 0 <. f ( { t ,  X} N) ~< 1 } 

be a closed, convex, bounded set, which is mapped into itself by the 
operator SN,. to be compact if condition (12) is calid. There is a fixed point 

f(n)({t, X }  N ) = S N, n(f(")( { t, X }  N) ) (44) 
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due to Shauder's theorem. The further proof is based on the fact that the 
operator U Su, n(f)  is compact (uniformly in n) in the topology of uniform 
convergence on each compact subset of / 'x" We define 

cr = {{t, x}N  rN: I{t, x}NI r} 

where I'l is the Euclidian distance in FN. One can prove that there exists 
n o (depending on r) and C (depending on N, Ilfll, and no) such that for 
g / >  no~ 

IsU,(f)(  { t, X} N) - sU ,(f)(  { t, X}N)I 
N 

<~ C(N, II/11, no) Z Ultj-tjl  + ~e (x j -x j ) ]  
j=l  

for {t, X}N and {t, X}N from Cr. Because of the equality 

f(.)( { t,,X } u (.) ({t, 

and Ilf(')({t, X}N)H ~< 1, one can Qbtain 

If('l({t, X } N ) -  f(")({t, X}~v)l 
N 

<~C(N, 1, no) • [ [ t j - t j [  + ~ ( x j - x j ) ]  
j = l  

i.e., the sequence f(')({t, X}N) has an accumulation point due to Arzela's 
theorem. One can perform a limit transition in Eq. (44), because the 
accumulating point of the sequence f ~ ) ( { t ,  X})  is a continuous function 
whose values are in the segment [0, 1]. The theorem has been proved. 
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